www.五月天,黑人大群XXXX,精灵梦叶罗丽第八季,98国产精品综合一区二区三区

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 介紹反光目標(biāo)

技術(shù)文章

介紹反光目標(biāo)

技術(shù)文章

Introduction to Reflective Objectives

Microscope objectives are one of the most recognizable components of a microscope design. Microscope objectives magnify images so they can be viewed easily by the human eye via an eyepiece or by an imaging system (e.g. imaging lens and camera). Traditional objectives are refractive in design; in other words, they are comprised of a series of optical lenses. However, the need for high magnification focusing optics, chromatically corrected from the deep-ultraviolet to the far-infrared, has prompted industry to develop economical off-the-shelf microscope objectives for these wavelengths - reflective, or mirror-based, objectives are the answer. These objectives employ a reflective design of two or more mirrors to focus light or form an image. For more information on objectives in general, view Understanding Microscopes and Objectives.

 

The most common type of reflective objective is a two-mirror Schwarzschild objective (Figure 1). This system consists of a small diameter "primary" mirror, held in position by a spider mount and a large diameter "secondary" mirror with a center aperture. The primary and secondary mirrors are represented with gold coatings to better illustrate their location within the reflective objective housing. These mirror-based objectives are available in two configurations: infinity corrected for focusing applications and finite conjugate for imaging applications.

Figure 1: Anatomy of a Reflective Objective

 

TYPES OF REFLECTIVE OBJECTIVES

Infinity Corrected Reflective Objectives

Infinity corrected reflective objectives (Figure 2) are ideal for focusing applications. Collimated light (e.g. a laser source) enters the objective through the center aperture in the secondary mirror and comes to focus at its specified working distance. This configuration provides an economical means of focusing broadband or multiple laser sources to a single point. A common application is focusing an infrared (IR) or ultraviolet (UV) laser (such as an Nd:YAG laser) which incorporates a visible reference beam.

Figure 2: Infinity Corrected Reflective Objective Design

 

Finite-Conjugate Reflective Objectives

Finite conjugate reflective objectives (Figure 3) are ideal for imaging applications. They are a straightforward solution that does not require the use of any additional focusing optics. This finite conjugate mirror-based configuration provides excellent resolution, and can typically be used interchangeably with traditional refractive microscope objectives. Infinity corrected reflective objectives can be used in imaging applications with the addition of a tube lens and have the added flexibility of introducing beam manipulation optics into the beam path.

Figure 3: Finite-Conjugate Reflective Objective Design

 

THE BENEFITS OF REFLECTIVE VS. REFRACTIVE MICROSCOPE OBJECTIVE DESIGNS

The primary advantage of reflective objectives versus their refractive counterparts is their chromatic correction over broad spectral ranges. Refractive objectives that offer similar performance in limited ranges, for example the visible spectrum, are fairly popular. However, as the wavelength range begins to exceed the design range, transmission and image performance suffer. In addition, there are numerous reflective coating options available that allow unmatched performance in the deep-UV, IR, and at specific laser wavelengths.

 

Important Reflective Objective Specifications

When comparing reflective objectives, there are two parameters unique to these mirror-based systems that need to be considered: obscuration and transmitted wavefront. In reflective systems, there is a central portion of the primary mirror that does not transfer the rays to the secondary mirror but rather reflects them back out through the stray light baffle. To avoid this, many manufacturers place an absorptive coating over the central part of the primary mirror. There are two other locations were obscuration occurs, namely, the diameter of the primary mirror and the width of the spider legs. It is best to include all contribution of obscuration in the stated value, though some manufacturers only include the contribution of the central obscuration. For example, Edmund Optics® includes all contribution of obscuration in specifications for reflective objectives.

 

Transmitted wavefront error is perhaps the most important parameter for many applications requiring a reflective objective; transmitted wavefront error is the difference between the wavefront from when it enters and exits the system. Recent advances in mirror manufacturing enable production and testing of high accuracy surfaces, creating better corrected systems. Mirrors on the order of λ/20 peak-to-valley (P-V) are achievable and these allow the production of reflective objectives that have a transmitted wavefront ≤ λ/4 P-V. For example, Edmund Optics hard-mounts all fixed TECHSPEC® ReflX™ Reflective Objectives, guaranteeing λ/10 RMS transmitted wavefront on the standard line and λ/4 P-V transmitted wavefront on the high performance line. The fixed line of TECHSPEC® ReflX™ Reflective Objectives is actively aligned and tested on a Zygo GPI-XP Interferometer to ensure that each objective is within specification.

 

While traditional refractive objectives are ideal for a range of applications within a specific wavelength band, reflective objectives can be substituted to increase performance and image quality in broadband applications from the deep-UV to the far-IR. Reflective objectives are ideal for FTIR, laser focusing, and ellipsometry applications where diffraction-limited performance and chromatic correction are crucial.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線(xiàn)客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線(xiàn)咨詢(xún)
QQ客服
QQ:17041053
電話(huà)咨詢(xún)
0510-68836815
關(guān)注微信
婷婷亚洲五月色综合久久 | 最近2018中文字幕免费看在线| 最近高清中文在线字幕在线观看| 亚洲成a人v欧美综合天堂麻豆| 免费人成在线观看视频播放| 免费无码国产欧美久久18| 朝鲜女人大白屁股ass孕交| 亚洲愉拍99热成人精品| 国产未成女一区二区三区| 色哟哟在线观看免费| 黄色视频app下载| 国产裸模视频免费区无码| 闺蜜和我被黑人4p到惨| 一个人www在线观看免费资源| 国产精品无码午夜福利| 久久av无码精品人妻出轨| 日韩欧美在线综合网| 欧美老妇人与黑人做爰| 大地资源电影中文在线观看| 无人在线完整免费高清观看| 国模少妇一区二区三区咪咕| 武器a原版| 啪啪动图边摸边吃奶做爽动态| 国产成人精品视频a片西瓜视频| 熟妇人妻无乱码中文字幕| jizzjizz日本护士水好多| 四川少妇大战4黑人| 成免费crm在线看系统| 俄罗斯ve乳librederm| 国产精品久久久久无码av| 成品网站W灬源码1688特点| 体育生gary猛烈gary| 老板含着她的花蒂啃咬高潮的视频 | 被主人在厨房用黄瓜调教| 50岁熟妇穿情趣透明内衣| 厨房掀起少妇裙子挺进去| 一本一道av无码中文字幕| 24小时日本高清在线观看电影| 色偷偷国色天香在线观看免费视频 | 女人做几次就不紧了| 曰本性l交片免费看|